The von Neumann Triple Point Paradox
نویسندگان
چکیده
We describe the problem of weak shock reflection off a wedge and discuss the triple point paradox that arises. When the shock is sufficiently weak and the wedge is thin, Mach reflection appears to be observed but is impossible according to what von Neumann originally showed in 1943. We summarize some recent numerical results for weak shock reflection problems for the unsteady transonic small disturbance equations, the nonlinear wave system, and the Euler equations. Rather than finding a standard but mathematically inadmissible Mach reflection with a shock triple point, the solutions contain a complex structure: there is a sequence of triple points and supersonic patches in a tiny region behind the leading triple point, with an expansion fan originating at each triple point. The sequence of patches may be infinite, and we refer to this structure as Guderley Mach reflection. The presence of the expansion fans at the triple points resolves the paradox. We describe some recent experimental evidence which is consistent with these numerical findings.
منابع مشابه
The Mach Reflection of Weak Shocks
We present numerical solutions of weak shock Mach reflections that contain a remarkably complex sequence of supersonic patches, triple points, and expansion fans immediately behind the leading triple point. This structure resolves the von Neumann triple point paradox of weak shock Mach reflection. During the second world war, von Neumann carried out an extensive study of shock reflection [5]. H...
متن کاملFocusing of weak shock waves and the von Neumann paradox of oblique shock reflection
Some phenomena involving intersection of weak shock waves at small angles are considered: the focusing of curved fronts at a&es, the transition between regular and irregular reflection of oblique shock waves on rigid walls and the diffraction patterns arising behind obstacles. The intersection of three shock waves plays a central role in most of these phenomena, giving rise to the von Neumann p...
متن کاملThe James and von Neumann-Jordan type constants and uniform normal structure in Banach spaces
Recently, Takahashi has introduced the James and von Neumann-Jordan type constants. In this paper, we present some sufficient conditions for uniform normal structure and therefore the fixed point property of a Banach space in terms of the James and von Neumann-Jordan type constants and the Ptolemy constant. Our main results of the paper significantly generalize and improve many known results in...
متن کاملThe Triple Point Paradox for the Nonlinear Wave System
We present numerical solutions of a two-dimensional Riemann problem for the nonlinear wave system which is used to describe the Mach reflection of weak shock waves. Robust low order as well as high resolution finite volume schemes are employed to solve this equation formulated in self-similar variables. These, together with extreme local grid refinement, are used to resolve the solution in the ...
متن کاملSelf-Similar Solutions for the Triple Point Paradox in Gasdynamics
We present numerical solutions of a two-dimensional Riemann problem for the compressible Euler equations that describes the Mach reflection of weak shock waves. High resolution finite volume schemes are used to solve the equations formulated in self-similar variables. We use extreme local grid refinement to resolve the solution in the neighborhood of an apparent but mathematically inadmissible ...
متن کامل